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Abstract

A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is
governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids
are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally
increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a
high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop
near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based
on a uniform-pressure–velocity flow and is significant only near the captured interface. A variety of two-material flows are
presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state
for the mixture based on the Jones–Wilkins–Lee (JWL) forms for the components. This equation of state includes a mix-
ture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock–interface collision,
steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylin-
drical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
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1. Introduction

Compressible multi-material flows arise in many areas of science and engineering. Problems of interest typ-
ically involve material interfaces separating regions of pure constituents. The geometry of such problems can
be comparatively simple as in the case of an isolated bubble suspended in a flow, or complex as in the case of
heterogeneous granular solids. In either case, the material interface is a prominent feature of the flow and its
numerical treatment must be performed in a physically consistent manner. For high-speed compressible flows
governed by a multi-material version of the Euler equations, it is well known that standard conservative
shock-capturing schemes produce unphysical numerical oscillations near the material interface, the cause of
the error being the calculation of pressure based on conservative cell-averaged variables. Within the context
of shock capturing methods, the difficulty has been addressed by a number of investigators. For example,
beginning with [1,2], Karni developed an interface-capturing method based on the primitive form of the gov-
erning equations. In this approach, the numerical treatment of pressure is handled accurately near the inter-
face, but the method is not conservative. However, a correction can be constructed so that the method is
locally conservative near shocks [3]. Other shock-capturing methods are based on conservative formulations
of the equations and rely on various special discretizations near material interfaces. In [4], for example, Abgr-
all introduced a method with a special discretization of the advection equation for the species mass fraction
designed to suppress numerical oscillations near the interface. This approach was modified in [5] for advection
equations associated with certain parameters of the constituent equations of state (such as the ratio of specific
heats for an ideal gas). Finally, in [6], a correction to the total energy was devised to eliminate unphysical
behavior.

Other numerical approaches to handle multi-material flows have been developed based on interface track-
ing. Such methods include, for example, the ghost-fluid method (GFM), arbitrary-Lagrangian–Eulerian
(ALE) methods and volume-of-fluid (volume-tracking) methods. The essential feature of these methods is
the introduction of an explicit description for the material interface. This explicit description eliminates the
unphysical behavior seen in capturing methods but at the cost of performing the interface reconstruction.
In the GFM [7–9] a function is introduced whose zero level set represents the material interface. The governing
equations for each constituent are solved on either side of the interface with the aid of ‘‘ghost-fluid’’ points
which are constructed across the interface. ALE methods [10,11] advect the material interface and use bound-
ary-conforming grids for its discretization. Finally, the volume-of-fluid methods [12,13] reconstruct a material
interface from advected volume fractions at every step and thus maintain sharp interfaces. This is by no means
a comprehensive list of methods for multi-material flow solvers, but rather, just a sampling. A more compre-
hensive overview of methods for multi-material problems is provided in [14].

This paper considers two-material flows as described by the multi-material Euler equations. The equations
include an indicator function which measures the mass fraction of one of the species and thus determines the
state of the mixture. A general equation of state is introduced for each constituent, and these are used to con-
struct an equation of state for the mixture based on certain closure conditions. A numerical method is devel-
oped based on the conservative form of the equations. The method is a high-resolution extension of
Godunov’s method [15] and includes a correction of the discretization of the energy equation designed to sup-
press numerical oscillations that would occur near a sharp material interface. The energy correction, based on
an analysis of a uniform-pressure–velocity flow, is applied at the level of the truncation error and is active only
near material interfaces. The numerical method is similar in spirit to those developed in [4,5], but it differs
from previous works in that it may be applied to any equation of state for the mixture. In addition, discret-
ization of the equations is carried out using composite overlapping grids in order to handle complex flow
geometries [16] and includes block-structured adaptive mesh refinement (AMR) in order to represent sharp
features of the flow (such as the material interface and shocks) with numerical efficiency [17]. This aspect
of the method builds on the work in [18] for the numerical treatment of the reactive Euler equations on over-
lapping grids.

An important new aspect of the present work is to show how a standard shock-capturing method, such as
Godunov’s method, can be modified to effectively and efficiently compute multi-material flows in complex
geometries. In addition, the method is not restricted to a mixture equation of state based on ideal equations
of state (or similar forms) for the constituents. For example, the constituent equations of state discussed in this
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paper are based on Jones–Wilkins–Lee (JWL) forms which are Mie–Grüneisen-type equations of state [19].
This choice is made with the application of condensed-phase, high-energy explosives in mind, although the
present study focuses on inert flows only. An extension of the numerical approach to multi-material reactive
flow is in progress.

The subsequent sections of the paper begin with a discussion of the governing equations in Section 2. This is
followed in Section 3 by a study of a specific one-dimensional Riemann problem involving a simple material
contact where difficulties with standard shock-capturing schemes are revealed. These difficulties are illustrated
using Godunov’s method with an exact Riemann solver and this provides a motivation for the energy correc-
tion designed to eliminate the numerical errors for this case. We introduce our full numerical method in Sec-
tion 4. Here, we begin with a brief discussion of the various elements of the numerical approach needed to
handle overlapping grids with AMR (the full details are given in [18]) but then focus our attention on the
new aspects of the numerical method. This includes the treatment of the second-order slope-correction in
primitive variables, the Roe Riemann solver for a general mixture equation of state and the energy correction
for this Riemann solver. We also include a discussion of the numerical treatment of the mixture equation of
state, which is defined implicitly for the general case.

The numerical method is used to solve a number of multi-material flows and these are presented in Section
5. The first problems discussed are used to study the behavior and accuracy of the method. For example, we
use the method of analytic solutions to demonstrate second-order convergence of the method for smooth flows
using both a single Cartesian grid and an overlapping grid consisting of two component grids. A one-dimen-
sional problem involving the interaction of a shock and a material interface is studied in order to assess the
behavior of the energy-corrected scheme for non-smooth flows. Here, we compare the numerical solution with
the exact solution and find excellent agreement. As a further test of the numerical method we compute the
solution of a two-dimensional flow involving the steady interaction of a planar interface and an oblique shock.
The exact solution for this flow is determined based on a shock-polar analysis and this solution is used to
assess the accuracy of the method. Overall we find excellent agreement with the exact solution for this two-
dimensional flow. Finally, we show results for more complex flows in which exact solutions are not available.
These include the interaction of a planar shock with a collection of gas bubbles and the impulsive motion of a
two-component mixture within a rigid cylindrical vessel. In the latter problem, we also examine the grid con-
vergence of the full method using AMR, the behavior of the grid overlap on the numerical solution, and the
Richtmyer–Meshkov instability that develops near the interface.
2. Governing equations

We consider a mixture of two inviscid, compressible materials, and assume that in two dimensions the den-
sity q, velocity (u1,u2), pressure p and total energy E of the mixture satisfy the usual balance equations
o

ot

q

qu1

qu2

E

26664
37775þ o

ox1

qu1

qu2
1 þ p

qu1u2

u1ðE þ pÞ

26664
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qu2
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26664
37775 ¼ 0; ð1Þ
representing conservation of mass, momentum and energy for the mixture. The composition of the mixture is
determined by the mass fraction /a of fluid a and the mass fraction /b = 1 � /a of fluid b. We assume that the
materials are chemically inert so that /a satisfies
o/a

ot
þ u1

o/a

ox1

þ u2

o/a

ox2

¼ 0: ð2Þ
(A similar equation holds for /b assuming that both constituents move with the mixture velocity.) The advec-
tion equation for /a may be combined with the balance equations in (1) to give the following conservation
equations governing the two-material mixture:
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The total energy for the mixture is given by
E ¼ qeþ 1

2
qðu2

1 þ u2
2Þ;
where e = e(q,p,/a) is the specific internal energy, which is specified by an equation of state for the mixture. It
is assumed that the equations have been rendered dimensionless using suitable scalings of the variables.

In order to construct an equation of state for the mixture, we first describe the mechanical and thermal
properties of the pure constituents. For our applications of interest, we assume the pure materials are gov-
erned by mechanical and thermal equations of state of Jones–Wilkins–Lee (JWL) form, namely
ek ¼
pkvk

xk
� F kðvkÞ þ F kðv0;kÞ; pk ¼

xk

vk
ðCv;kT k þ ZkðvkÞ � Zkðv0;kÞÞ; ð4Þ
where vk, pk, ek and Tk are the specific volume, pressure, specific energy and temperature, respectively, for
material k, k = a, b and v0,k is a reference specific volume. The JWL forms are special cases of a Mie–Grün-
eisen equation of state, and are often used in models of condensed-phase explosives [19], an application that
motivates our work. In the JWL forms, xk is the Grüneisen constant, Cv,k is the specific heat at constant vol-
ume (assumed constant for each k), and F k and Zk are stiffening functions, which are given by
F kðvkÞ ¼ Ak
vk

xk
� 1

R1;k

� �
expð�R1;kvkÞ þ Bk

vk

xk
� 1

R2;k

� �
expð�R2;kvkÞ ð5Þ
and
ZkðvkÞ ¼ Ak
vk

xk

� �
expð�R1;kvkÞ þ Bk

vk

xk

� �
expð�R2;kvkÞ; ð6Þ
where Ak, Bk, R1,k, R2,k are constants. The stiffening functions are fit to experimental data and the constants in
(5) and (6) are available for a large number of materials at various conditions [20]. We note that the JWL
forms in (4) also include the ideal gas case when F a ¼ F b ¼ Za ¼ Zb ¼ 0. The mixture rules
e ¼ /aea þ /beb; v ¼ /ava þ /bvb ð7Þ

relate the specific energy, e, and the specific volume, v = 1/q, for the mixture in terms of the corresponding
quantities of the material constituents. Following the work in [21–23], we assume pressure and temperature
equilibrium so that p = pa = pb and Ta = Tb, although other closure conditions may be more appropriate
for other applications. The closure conditions provide the final equations needed to specify (implicitly) an
equation of state for the mixture.

For example, in the special case of an ideal gas, the mechanical and thermal equations of state in (4) reduce
to
ek ¼ Cv;kT k ¼
pkvk

ck � 1
; ck ¼ xk þ 1; k ¼ a or b: ð8Þ
These equations may be combined with the mixture rules in (7) and the closure conditions to give a mixture
equation of state which takes the familiar form
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e ¼ p
ðc� 1Þq ; ð9Þ
but with an effective ratio of specific heats for the mixture given by
c ¼ cð/aÞ ¼
/acaCv;a þ ð1� /aÞcbCv;b

/aCv;a þ ð1� /aÞCv;b
: ð10Þ
While the main focus is in flows for which a sharp interface separates regions with /a = 0 from regions with
/a = 1, the governing equations with JWL equations of state for the constituents and physically-based mixture
rules apply for flows with smooth mixture regions as well (as would be the case for an extension to reactive
flows). For the case of a sharp interface, the governing equations in (3) for the mixture reduce to the usual
Euler equations for the individual constituents on either side of the interface with the appropriate equation
of state, either k = a or b, given in (4). A numerical description of such flows, however, in which the material
interface is captured requires a description for the mixture such as the one given above. Typically, the mixture
region near the interface is narrow, spanning a few grid cells, and this is where the mixture rules apply. How-
ever, it is this narrow region that may cause numerical difficulties as we discuss in more detail in the next
section.

3. A shock-capturing method with energy correction

In this section, we describe a modification of a typical shock capturing scheme for the two-material equa-
tions. The modification involves an energy correction designed to suppress numerical errors that develop from
the smeared interface between the materials. The purpose of this discussion is to introduce the basic numerical
approach in a simple context before describing the full implementation in Section 4 below. Accordingly, we
consider one-dimensional flow for which (3) reduces to
o

ot
uþ o

ox
fðuÞ ¼ 0; ð11Þ
where
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qu/a
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and assume an equation of state for the mixture given by (9) and (10). Let us define a uniform grid, xj = jDx,
with cell average
U n
j ¼

1

Dx

Z xjþ1=2

xj�1=2

uðx; tnÞdx: ð12Þ
A conservative discretization is
U nþ1
j ¼ Un

j �
Dt
Dx
ðFðUn

j ;U
n
jþ1Þ � FðUn

j�1;U
n
j ÞÞ; ð13Þ
where F(uL,uR) is a first-order numerical flux function associated with f, such as the Godunov flux, and Dt is
the time step.

An example of the numerical error that arises from the smeared interface between two materials is illus-
trated in Fig. 1. The plots show the solution of (11) for the initial state given by (q,u,p,/a) =
(0.138, 0.5,1.0, 1.0) for x < 0.4 and (1.0,0.5,1.0, 0.0) for x P 0.4. The interface, initially at x = 0.4, separates
material a, an ideal gas with ca = 1.67 and Cv,a = 3.11, on the left from material b, an ideal gas with
cb = 1.4 and Cv,b = 0.72, on the right. These values correspond to helium on the left and air on the right.
The velocity and pressure are constant initially and remain constant in the exact solution for the flow, and



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

density

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55
velocity

0 0.2 0.4 0.6 0.8 1
0.99

1

1.01

1.02

1.03

1.04

1.05
pressure

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

species mass fraction

Fig. 1. Numerical solution at t = 0.1 using Godunov’s method with Dx = 0.004 and CFL number equal to 0.8. The exact solution is
shown by the black curves and the numerical solution is shown by the red dots. (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)
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thus the interface simply propagates to the right with velocity equal to 0.5. The black curve in each plot indi-
cates this solution while the red dots show the numerical solution given by (13) using the Godunov flux func-
tion and a grid with 250 cells in the interval x 2 [0, 1]. Here, we observe that the numerical values for q and /a

are in reasonably good agreement with the exact solution, but that the values for u and p are not. The smeared
interface generates significant numerical errors in these latter two quantities that propagate away from the
interface along the forward and backward characteristic waves, u ± c, where c is the sound speed for the
appropriate material state.

The numerical error shown in Fig. 1 is typical for any standard conservative, shock-capturing scheme, such
as Godunov’s method, applied to (11). The error may be explained by considering one step of the numerical
method from a uniform-pressure–velocity (UPV) state, as in the example above. Assuming that un

j ¼ V P 0
and pn

j ¼ P for all j at some time level tn, Godunov’s method becomes a simple upwind scheme
Unþ1
j ¼ U n

j �
Dt
Dx
ðfðU n

j Þ � fðU n
j�1ÞÞ; ð14Þ
from which we obtain
qnþ1
j ¼ qn

j �
V Dt
Dx
ðqn

j � qn
j�1Þ; ð15Þ

unþ1
j ¼ V ; ð16Þ

pnþ1
j

cð/nþ1
a;j Þ � 1

¼ P
1

cð/n
a;jÞ � 1

� V Dt
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1

cð/n
a;jÞ � 1

� 1

cð/n
a;j�1Þ � 1

 !( )
; ð17Þ

qnþ1
j /nþ1

a;j ¼ qn
j /

n
a;j �

V Dt
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ðqn

j /
n
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j�1/
n
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From (15) and (18), we see that q and q/a evolve according to first-order upwind methods, and that unþ1
j

equals V after one time step according to (16). The difficulty arises in (17). Here, we note that pnþ1
j would equal

P, and thus a UPV state would be maintained at tn+1, if
1

cð/nþ1
a;j Þ � 1

¼ 1

cð/n
a;jÞ � 1

� V Dt
Dx

1

cð/n
a;jÞ � 1

� 1

cð/n
a;j�1Þ � 1

 !
; ð19Þ
which is a first-order upwind approximation of the equation
oC
ot
þ V

oC
ox
¼ 0; C � 1

cð/aÞ � 1
: ð20Þ
Analytically, Eq. (20) holds (at least in some weak sense), since /a satisfies (2). However, the equality in (19) is
not satisfied in general because this equation is not consistent with the discrete evolution equation for /a that
can be derived from Eqs. (15) and (18). It is this incompatibility which leads to the numerical error (after sev-
eral time steps) of the type shown in Fig. 1.

For the case of a mixture of ideal gases with equation of state given in (9) and (10), it is possible to remove
the numerical error for UPV flow by deriving suitable difference approximations for /a. In the one-dimen-
sional problem considered above, for example, UPV flow is maintained if (19) is used to advance /a instead
of (18). This approach is in the spirit of the numerical method discussed in [4,5]. An advantage of this
approach is that conservation of total mass, momentum and energy is maintained in the discrete equations
(although conservation of mass of the individual component materials is lost). However, the approach does
not extend easily for the case of more general equations of state in which the EOS is defined implicitly, such
as the JWL forms considered later in this paper.

An alternate numerical approach is based on (13) but incorporates an energy correction into the discretiza-
tion. The correction is constructed to subtract the incompatibility error in the energy equation associated with
the discretization of (20). An advantage of this approach is that it can handle general equations of state. For
one-dimensional flow, the scheme has the quasi-conservative form
U nþ1
j ¼ Un

j �
Dt
Dx
ðFðUn

j ;U
n
jþ1Þ � FðUn

j�1;U
n
j ÞÞ þ DGnþ1

j ; ð21Þ
where DGnþ1
j ¼ ½0; 0;DEnþ1

j ; 0�T includes an energy correction given by
DEnþ1
j ¼

pn
j � ~pnþ1

j

cð/nþ1
a;j Þ � 1

ð22Þ
for the case of a mixture of ideal gases. (A suitable form for the energy correction for general equations of state
is discussed in Section 4.2.2.) The value for ~pnþ1

j in the formula for DEnþ1
j is the pressure in the conservative

state eU nþ1
j computed in advance from
eU nþ1
j ¼ U n

j �
Dt
Dx
ðFðU n

j ;
eU n

jþ1Þ � Fð eU n
j�1;U

n
j ÞÞ; ð23Þ
where eU n
j�1 and eU n

jþ1 are the conservative states corresponding to the primitive variables (qn
j�1, un

j , pn
j , /n

a;j�1)
and (qn

jþ1, un
j , pn

j , /n
a;jþ1), respectively, i.e. a UPV state corresponding to U n

j . The energy-corrected scheme now
preserves uniform velocity and pressure in the numerical approximation of UPV flow for all time steps, and
the previous numerical error associated with the smeared interface is suppressed as shown in Fig. 2.

A closer examination of the energy correction shows that its (leading-order) contribution to the truncation
error, i.e. from �DEnþ1

j =Dt, is given by
sn
j ¼ Dxjujp 1� jujDt

Dx

� �
C0

q
oq
ox
� C00

2

o/a

ox

� �
o/a

ox

����
x¼xj;t¼tn

;

where C = C(/a) is defined in (20). Thus, the formal order of accuracy of the energy-corrected scheme in
(21) is unchanged from the original Godunov method. Further, we note that the contribution to the trun-
cation error depends on derivatives of q and /a so that its greatest effect occurs when q and /a vary rapidly
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Fig. 2. Numerical solution at t = 0.1 using Godunov’s method with Dx = 0.004 and CFL number 0.8. The black curves show the exact
solution, the red dots show Godunov’s method without energy correction, and the blue crosses show Godunov’s method with energy
correction. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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and u 6¼ 0, such as near a moving material interface. (The energy correction is zero in regions where u = 0.)
However, since the width of a captured moving interface increases gradually over time, the effect of the en-
ergy correction is expected to decrease. Away from the interface where the derivative of /a is approximately
zero, the energy correction is negligible. In these regions of the flow, shock waves would be captured and
evolve according to the usual conservative Godunov scheme. At isolated points in time and space it is pos-
sible for a material interface and a shock to collide. At such points, discrete conservation is not strictly
maintained in the energy equation which is a possible concern (although mass and momentum are still con-
served in the discrete equations). To address this issue, several problems involving shock–interface collisions
are studied numerically in Sections 5.2 and 5.3, and it is found that the energy-corrected scheme gives accu-
rate results in terms of shock positions for such interactions. Hence, the energy correction has the desirable
effect of suppressing numerical errors associated with the captured interface, while not adversely effecting
the behavior of shocks in the flow.

Finally, we note that the computational cost associated with the calculation of DEn
j is not large since the

numerical flux calculations in (23) can be done inexpensively. This calculation depends on the choice of the
particular numerical flux function. If, for example, the Godunov flux or approximate Roe flux function is cho-
sen, then
FðU n
j ;
eU n

jþ1Þ ¼
fðU n

j Þ if un
j > 0;

fð eU n
jþ1Þ if un

j < 0;

(

since Un
j and eU n

jþ1 belong to a UPV flow so that the jump across the acoustic fields is zero. A similar simpli-
fication applies for Fð eU n

j�1;U
n
j Þ.
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4. A high-resolution method with energy correction

We now return to the governing equations in (3) for flow in two dimensions and describe a numerical
discretization of the equations on composite overlapping grids with adaptive mesh refinement (AMR).
Overlapping grids are used to handle complex flow geometries and AMR is used to handle fine-scale
structures such as shocks and contacts (including the material interface) with numerical efficiency. The
basic numerical approach follows that described in [18], but includes several new modifications designed
to handle multi-material flows. The basic overlapping grid framework, including AMR, is described in
Section 4.1. Here we discuss a modification to the interpolation at the overlap between component grids
and between grids at different refinement levels which is needed in order to maintain uniform-pressure–
velocity (UPV) flow. A second-order, slope-limited extension of Godunov’s method is employed on each
curvilinear component grid in the overlapping-AMR grid system. This scheme, as described in Section 4.2,
is written in a predictor–corrector fashion where the slope correction employed in the predictor step is
modified to maintain UPV flow. A Roe Riemann solver is used to compute numerical fluxes in the cor-
rector step, and this also requires an extension to handle the general mixture equation of state. The dis-
cretization also includes a suitable energy correction similar to that introduced in the previous section. We
close the description of the discretization with a discussion of the evaluation of the mixture equation of
state.
4.1. Overlapping grids and AMR

We assume that the flow domain is given by X and that it is discretized by an overlapping grid G. The over-
lapping grid consists of a set of component grids fGig, i ¼ 1; . . . ;N g, that cover X and overlap where they
meet. Each component grid covers a domain Xi in physical space and is defined by a mapping from physical
space (x1,x2) in two dimensions to the unit square (r1, r2) in computational space. Typically, the bulk of the
flow domain is covered by one or more background Cartesian grids, while any curved boundaries of X are
Fig. 3. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views show the
component grids in the unit square parameter space. Grid points are classified as discretization points, interpolation points (green or blue
dots), or unused points (open disks). Ghost points (green or blue triangles) are used to apply boundary conditions. Here interpolation is
performed in primitive quantities and the discretization includes a numerical source to the energy equation to maintain UPV flow. (For
interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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represented by narrow boundary-fitted curvilinear grids. This grid construction is quite general and numeri-
cally efficient because the majority of grid points belong to Cartesian grids (which are treated efficiently in our
computational kernels).

A simple example of an overlapping grid is shown in Fig. 3. In this example, the overlapping grid G consists
of a background Cartesian grid and a boundary-fitted annular grid. The annular grid cuts a hole in the back-
ground grid rendering some grid points unused. These unused points are tagged and no computation is per-
formed there. The remaining grid points are tagged as either interpolation points or discretization points.
Interpolation points are those where the numerical solution is communicated between grids at the overlap.
Discretization points are those where the discretization of the governing equations or boundary conditions
is applied. The grid also employs ghost points to facilitate the numerical approximation of boundary condi-
tions. The discretization used in this paper requires two layers of ghost points to support the width of the 5-
point second-order Godunov stencil.

The interpolation at the grid overlap may be done using either primitive variables w = [q,u1,u2,p,/a]T or
conservative variables u = [q,qu1,qu2,E,q/a]T. The method described in [18] performs bi-linear interpolation
in terms of conserved variables. For the numerical approximation of the multi-material equations considered
here, this choice does not maintain UPV flow since the pressure would not remain uniform in general, and thus
interpolation of conservative variables would lead to numerical errors of the type described in the previous
section. To avoid this error, we perform bi-linear interpolation of primitive variables.

Adaptive mesh refinement (AMR) is used in regions of the flow where the solution changes rapidly, such as
near shocks and the material interface. We employ a block-structured AMR approach following that
described originally in [17] and using modifications for overlapping grids as presented in [18]. An estimate
of the error is used to tag grid points for refinement. Following [18], we use
Fig. 4.
grids.
ei ¼
Xm

k¼1

eðkÞi ; ð24Þ
where m is the number of components (m = 5 in our case), and
eðkÞi ¼
1

2

X2

a¼1

c1

sk
D0aU ðkÞi

��� ���þ c2

sk
DþaD�aU ðkÞi

��� ���� �
ð25Þ
is an estimate of the error in the kth component of Ui. In (25), sk is a scale factor for U ðkÞi , c1 and c2 are con-
stants (weights), and D0a, D+a and D�a are the un-divided central, forward and backward difference operators,
respectively, in the a-direction in index space. The error estimate is computed for each component grid, and
then smoothed and interpolated where the grids overlap. Refinement grid patches are created to cover all grids
points where the smoothed error estimate is greater than a chosen tolerance. For example, Fig. 4 shows the
Component grid 1
(base level) 

AMR grid belonging
to component grid 1

AMR grids belonging
to component grid 2

Component grid 2
(base level)

Overlapping grids and AMR; a view of the overlap region showing the interpolation between refinement grids from different base
The black squares indicate interpolation points.



272 J.W. Banks et al. / Journal of Computational Physics 223 (2007) 262–297
refinement grid structure near an overlap between grids. For the problems considered in this work, the mate-
rial interface lies on the finest refinement level.

4.2. Discretization on a mapped grid

Each component grid, including base-level grids and any refined grids, is defined by a mapping from phys-
ical space (x1,x2) to the unit square in computational space (r1, r2). In computational space, Eq. (3) becomes
o

ot
uþ 1

J
o

or1

F1ðuÞ þ
1

J
o

or2

F2ðuÞ ¼ 0; ð26Þ
where
F1ðuÞ ¼
ox2

or2

f1 �
ox1

or2

f2; F2ðuÞ ¼ �
ox2

or1

f1 þ
ox1

or1

f2
and
J ¼ oðx1; x2Þ
oðr1; r2Þ

���� ����:

The metrics of the mapping, ox1

or2
, ox2

or2
, etc. and the Jacobian are known for each component grid. The discreti-

zation of (26) is performed using a uniform grid (r1,i, r2,j) with grid spacing (Dr1,Dr2). The resulting quasi-con-
servative scheme is a generalization of (21) which for later purposes is written in the form
U nþ1
i;j ¼ bU nþ1

i;j þ DGnþ1
i;j ; ð27Þ
where
bU nþ1
i;j ¼ U n

i;j �
Dt

JDr1

ðF n
1;iþ1=2;j � F n

1;i�1=2;jÞ �
Dt

JDr2

ðF n
2;i;jþ1=2 � F n

2;i;j�1=2Þ: ð28Þ
Here, U n
i;j is an approximation to the cell average at (r1,i, r2,j) and at time t = tn, F n

1;i�1=2;j and F n
2;i;j�1=2 are

numerical fluxes in the r1- and r2-directions, respectively and DGnþ1
i;j ¼ ½0; 0; 0;DEnþ1

i;j ; 0�
T involves an energy

correction (as discussed in Section 4.2.2).

4.2.1. Numerical flux calculation

The fluxes in (28) may be computed in a number of ways. We choose a slope-limited Godunov method with
an approximate Roe Riemann solver suitably modified to handle the general mixture equation of state which
is defined implicitly but may be regarded in the form e = e(q,p,/a) or p = p(q,qe,q/a) whichever is conve-
nient. (A description of the numerical evaluation of the equation of state is given in Section 4.2.3.) The basic
approach for the flux calculation is similar to that used in [18] and so here we focus on the new elements of the
calculation appropriate for the multi-material equations.

Let us consider, for example, the flux F n
1;iþ1=2;j between grid cells (r1,i, r2,j) and (r1,i+1, r2,j). The first step

involves the calculation of left and right states for the approximate Riemann solver. These are based on
the Taylor expansions
wL ¼ wn
i;j þ

Dr1

2

ow

or1

� �n

i;j

þ Dt
2

ow

ot

� �n

i;j

þ � � � ;

wR ¼ wn
iþ1;j �

Dr1

2

ow

or1

� �n

iþ1;j

þ Dt
2

ow

ot

� �n

iþ1;j

þ � � � ;
ð29Þ
where w = [q,u1,u2,p,/a]T are the primitive variables corresponding to u. These variables solve the quasi-lin-
ear equations
ow

ot
þ A1

ow

or1

þ A2

ow

or2

¼ 0; ð30Þ
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where
A1 ¼ þ
1

J
ox2

or2

u1 q 0 0 0

0 u1 0 1=q 0

0 0 u1 0 0

0 c2q 0 u1 0

0 0 0 0 u1

26666664

37777775�
1

J
ox1

or2

u2 q 0 0 0

0 u2 0 0 0

0 0 u2 1=q 0

0 0 c2q u2 0

0 0 0 0 u2

26666664

37777775;

A2 ¼ �
1

J
ox2

or1

u1 q 0 0 0

0 u1 0 1=q 0

0 0 u1 0 0

0 c2q 0 u1 0

0 0 0 0 u1

26666664

37777775þ
1

J
ox1

or1

u2 q 0 0 0

0 u2 0 0 0

0 0 u2 1=q 0

0 0 c2q u2 0

0 0 0 0 u2

26666664

37777775:
The square of the sound speed is given by
c2 ¼ op
oq
þ h

op
oðqeÞ þ /a

op
oðq/aÞ

; ð31Þ
where h = e + p 0/q is the enthalpy, and where the partial derivatives of p with respect to q, qe and q/a are
specified by the chosen equation of state for the mixture, see Section 4.2.3. In view of (30), the expansions
in (29) become � �� � � �
wL ¼ wn
i;j þ

Dr1

2
I � Dt

Dr1

An
1;i;j

ow

or1

n

i;j

� Dt
2

An
2;i;j

ow

or2

n

i;j

þ � � � ;

wR ¼ wn
iþ1;j �

Dr1

2
I þ Dt

Dr1

An
1;iþ1;j

� �
ow

or1

� �n

iþ1;j

� Dt
2

An
2;iþ1;j

ow

or2

� �n

iþ1;j

þ � � � :
ð32Þ
Slope-limited approximations for the derivatives in (32) are defined in terms of characteristic variables. Let
Ak ¼ RkKkR�1

k be the eigenvalue decomposition of Ak, k = 1 or 2, and define
an
i;j ¼ minmod ðR�1

1 Þ
n
i;jðW n

i;j � W n
i�1;jÞ; ðR�1

1 Þ
n
i;jðW n

iþ1;j � W n
i;jÞ

� �
;

bn
i;j ¼ minmod ðR�1

2 Þ
n
i;jðW n

i;j � W n
i;j�1Þ; ðR�1

2 Þ
n
i;jðW n

i;jþ1 � W n
i;jÞ

� �
;

ð33Þ
where minmod(Æ , Æ) is the usual minimum-modulus function (applied componentwise) and W n
i;j are the primi-

tive variables corresponding to Un
i;j. These approximations are used in (32) to give
W L ¼ W n
i;j þ

1

2
Rn

1;i;j I � Dt
Dr1

maxf0;Kn
1;i;jg

� �
an

i;j �
Dt

2Dr2

Rn
2;i;jK

n
2;i;jb

n
i;j;

W R ¼ W n
iþ1;j �

1

2
Rn

1;iþ1;j I þ Dt
Dr1

minf0;Kn
1;iþ1;jg

� �
an

iþ1;j �
Dt

2Dr2

Rn
2;iþ1;jK

n
2;iþ1;jb

n
iþ1;j;

ð34Þ
which are the left and right states used to compute F n
1;iþ1=2;j. Similar calculations are used to obtain left and

right states for the other numerical fluxes.
With left and right states in hand, we now consider an approximate one-dimensional Riemann problem in

the r1 direction given by
ou

ot
þ B1

ou

or1

¼ 0; jr1j <1; t > 0; ð35Þ
with
uðr1; 0Þ ¼
UL if r1 6 0;

UR if r1 > 0;

�

where UL and UR are the left and right states in conservative variables corresponding to WL and WR, respec-
tively. Following the usual Roe prescription, the flux F n

1;iþ1=2;j is taken from the exact solution of the
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approximate (linear) Riemann problem along r1 = 0 for some suitably chosen matrix B1 which depends on the
left and right states. (In practice, we also employ a sonic fix as described in [24].) For the r1 direction, we set
B1 ¼
oF1

ou
ð�uÞ;
where �u is an averaged state chosen so that
F1ðU RÞ � F1ðU LÞ ¼ B1ðUR � U LÞ: ð36Þ

The matrix B1 involves the velocity ð�u1; �u2Þ, total enthalpy �H , mass fraction �/a of the averaged state, and
ð�pq; �pqe; �pq/a

Þwhich approximate the partial derivatives of p at the averaged state. The total enthalpy is defined by
H ¼ hþ 1

2
ðu2

1 þ u2
2Þ:
Following [25], we set
�z ¼
ffiffiffi
q
p

L
zL þ

ffiffiffi
q
p

R
zRffiffiffi

q
p

L
þ ffiffiffi

q
p

R

for z ¼ ðu1; u2;H ;/aÞ:
For this choice, (36) reduces to the scalar constraint
Dp ¼ �pqDqþ �pqeDðqeÞ þ �pq/a
Dðq/aÞ; ð37Þ
where Dp = pR � pL, Dq = qR � qL, etc., are known. The remaining task is to define �pq, �pqe and �pq/a
to satisfy

(37), subject to mild conditions such as continuity as UR � UL! 0.
The choice of the three derivatives satisfying (37) is not unique. Glaister offers one choice for the case of the

single-component Euler equations in Ref. [25] but an extension of this choice for the multi-material case could
require the evaluation of the mixture equation of state for values of /a outside of the interval [0, 1]. An alter-
nate approach which avoids this difficulty may be viewed geometrically as finding the point ð�pq; �pqe; �pq/a

Þ on
the plane given by (37) which is closest to the mean values (p1,p2,p3) defined by
p1 ¼
1

2

op
oq

� �
L

þ op
oq

� �
R

� 	
; p2 ¼

1

2

op
oðqeÞ

� �
L

þ op
oðqeÞ

� �
R

� 	

and
p3 ¼
1

2

op
oðq/aÞ

� �
L

þ op
oðq/aÞ

� �
R

� 	
:

This construction gives
�pq ¼ p1 þ hDq; �pqe ¼ p2 þ hDðqeÞ; �pq/a
¼ p3 þ hDðq/aÞ;
where
h ¼ Dp � p1Dq� p2DðqeÞ � p3Dðq/aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDqÞ2 þ ðDðqeÞÞ2 þ ðDðq/aÞÞ

2
q :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

In cases, where ðDqÞ2 þ ðDðqeÞÞ2 þ ðDðq/aÞÞ

2 ¼ 0 we set h = 0 and thus �pq ¼ p1, �pqe ¼ p2 and �pq/a
¼ p3.

The exact solution of (35) involves the eigenvalues and eigenvectors of B1. Let
a1 ¼
1

a4

ox2

or2

; a2 ¼ �
1

a4

ox1

or2

; a3 ¼
a4

J
; ð38Þ
where
a4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox2

or2

� �2

þ ox1

or2

� �2
s

:

The eigenvalues of B1 are given by
�l1 ¼ a3ð�w� �cÞ; �l2 ¼ �l3 ¼ �l4 ¼ a3 �w; �l5 ¼ a3ð�wþ �cÞ;
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where �w ¼ a1�u1 þ a2�u2 is the component of the velocity of the averaged state normal to the curve r1 = constant
and �c is the sound speed given by
�c2 ¼ �pq þ �h� 1

2
ð�u2

1 þ �u2
2Þ

� �
�pqe þ �/a�pq/a

:

The right and left eigenvectors of B1 belonging to the eigenvalues l1 and l5 are
�n1 ¼

1

�u1 � a1�c

�u2 � a2�c
�h� �w�c

�/a

26666664

37777775; �g1 ¼
1

2�c2

�pq þ 1
2
ð�u2

1 þ �u2
2Þ�pqe þ �w�c

��u1�pqe � a1�c

��u2�pqe � a2�c

�pqe

�pq/a

26666664

37777775

and
�n5 ¼

1

�u1 þ a1�c

�u2 þ a2�c
�hþ �w�c

�/a

26666664

37777775; �g5 ¼
1

2�c2

�pq þ 1
2
ð�u2

1 þ �u2
2Þ�pqe � �w�c

��u1�pqe þ a1�c

��u2�pqe þ a2�c

�pqe

�pq/a

26666664

37777775;
respectively. The numerical flux is then given by
F n
1;iþ1=2;j ¼

F 1ðU LÞ; if �l2 > 0 and �l1 P 0;

F 1ðU LÞ þ �q1�l1
�n1; if �l2 > 0 and �l1 < 0;

F 1ðU RÞ � �q5�l5
�n5; if �l2 6 0 and �l5 > 0;

F 1ðU RÞ; if �l2 6 0 and �l5 6 0;

8>>><>>>: ð39Þ
where �qi ¼ �gT
i ðUR � U LÞ, i = 1 or 5.

4.2.2. Energy correction

The derivation of the energy correction in (27) follows closely the construction in Section 3 for one-dimen-
sional flow. The basic idea is the same, but the details differ somewhat in order to cope with a general equation
of state, the high-resolution extension, and curvilinear grids. We consider the two-step process in (27) and (28)
with the temporary state bU nþ1

i;j at time tn+1 being the result of a conservative shock-capturing scheme with
fluxes calculated as outlined in Section 4.2.1. As such bU nþ1

i;j is potentially contaminated by the type of error
illustrated in Fig. 1 and an energy correction is added to suppress this numerical error.

As before, we perform an auxiliary calculation for a suitable UPV flow to determine the size of the error.
Let
eU nþ1
i;j ¼ Un

i;j �
Dt

JDr1

ðeF n
1;iþ1=2;j � eF n

1;i�1=2;jÞ �
Dt

JDr2

ðeF n
2;i;jþ1=2 � eF n

2;i;j�1=2Þ; ð40Þ
where eF n
1;i�1=2;j and eF n

2;i;j�1=2 are numerical fluxes obtained using left and right states corresponding to a UPV
flow determined by the velocity and pressure of cell (r1,i, r2,j) at time tn. For example, eF n

1;iþ1=2;j is computed with
left and right states given by eU L and eU R corresponding to the slope-corrected primitive states WL and WR in
(34) but with the velocity and pressure in both states replaced by ðun

1i;j
; un

2i;j
Þ and pn

i;j, respectively. The Riemann
problem consists only of a contact discontinuity and thus the flux is given by
eF n
1;iþ1=2;j ¼

F 1ð eU LÞ if a3wn
i;j > 0;

F 1ð eU RÞ if a3wn
i;j < 0;

(

where wn

i;j ¼ a1un
1i;j
þ a2un

2i;j
and (a1,a2,a3) are given in (38). Similar formulas are used to obtain the remaining

fluxes in (40).
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We now have the necessary information to compute the energy correction in (27). The formula is an exten-
sion of the one in (22) for a general equation of state. Let pn

i;j and ~pnþ1
i;j be the pressures computed from the

states U n
i;j and eU nþ1

i;j , respectively, and define
Dpnþ1
i;j ¼ pn

i;j � ~pnþ1
i;j :
The energy correction is then given by
DEnþ1
i;j ¼ q̂nþ1

i;j eðq̂nþ1
i;j ; p̂

nþ1
i;j þ Dpnþ1

i;j ; /̂
nþ1
ai;j
Þ � q̂nþ1

i;j ênþ1
i;j ; ð41Þ
where q̂nþ1
i;j , p̂nþ1

i;j , ênþ1
i;j and /̂nþ1

ai;j
are the density, pressure, internal energy and mass fraction given by the statebU nþ1

i;j , respectively, and e = e(q,p,/a) is determined by the equation of state (as discussed in Section 4.2.3).
As noted earlier, the energy correction is non-zero only in regions of the flow where /a varies. Thus, for

numerical efficiency the calculation of eU nþ1
i;j in (40) followed by DEnþ1

i;j in (41) is performed only near the mate-
rial interface. This region is narrow and represents a small fraction of the total number of grid points, and thus
the added computational cost of the energy correction is small.

Finally, we note that the quasi-conservative scheme in (27) and (28) with the energy correction in (41) based
on the slope-corrected states is second-order accurate for smooth flow. This will be demonstrated in Section
5.1 by comparing the numerical solution with exact smooth solutions constructed through the method of ana-
lytic solutions.

4.2.3. Evaluation of the equation of state

An evaluation of the equation of state for the mixture is required to obtain the pressure p and its first deriv-
atives as a function of the conservative variables (q,qe,q/a) or the internal energy e as a function of the prim-
itive variables (q,p,/a). This evaluation is needed to obtain the eigenvalues and eigenvectors for the slope
corrections in (34), to compute the numerical flux in (39) based on the Roe-averaged state, and to determine
the energy correction in (41). For the case of JWL equations of state for the pure constituents, the mixture
rules in (7) give
1

q
¼ /ava þ ð1� /aÞvb; ð42Þ
and
e ¼ /a
pva

xa
� F aðvaÞ þ F aðv0;aÞ


 �
þ ð1� /aÞ

pvb

xb
� F bðvbÞ þ F bðv0;bÞ


 �
; ð43Þ
where vk is the specific volume of material k, k = a, b and F k is defined in (5). In (43), we have assumed
mechanical equilibrium so that pa = pb = p. The further assumption of thermal equilibrium gives
1

Cv;a

pva

xa
� ZaðvaÞ þ Zaðv0;aÞ


 �
¼ 1

Cv;b

pvb

xb
� ZbðvbÞ þ Zbðv0;bÞ


 �
; ð44Þ
where Zk is defined in (6). Eqs. (42)–(44) provide three equations for the six unknowns q, p, e, /a, va and vb,
and these determine p = p(q,qe,q/a) or e = e(q,p,/a) implicitly upon elimination of va and vb.

For the special case of ideal gases in which F k ¼ Zk ¼ 0, k = a, b, the equation of state for the mixture is
given explicitly in (9). Further, the partial derivatives of p with respect to the conservative variables are given
by
op
oq
¼ e/aCv;aCv;bðcb � caÞ
ð/aCv;a þ ð1� /aÞCv;bÞ2

;
op

oðqeÞ ¼ cð/aÞ � 1
and
op
oðq/aÞ

¼ � eCv;aCv;bðcb � caÞ
ð/aCv;a þ ð1� /aÞCv;bÞ2

;

where c(/a) is given in (10).
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For the more general case in which F k and Zk are not zero, a numerical evaluation is necessary. This may
be done using an application of Newton’s method which gives p = p(q,qe,q/a) or e = e(q,p,/a) approxi-
mately. (In practice, we also save converged values for the extra variables va and vb at all grid points so that
they may be used as initial guesses for Newton iterations at the next time step.) Once converged values are
found, the partial derivatives of p with respect to q, qe and q/a may be obtained from the linear system of
equations implied by an implicit differentiation of (42)–(44).

5. Numerical results

We now present numerical results using the numerical method described in Section 4. The discussion begins
with a study of the behavior and accuracy of the numerical approach for cases in which exact solutions are
known. We then proceed in the latter subsections to more complicated problems where exact solutions are
not known.

5.1. Smooth two-dimensional flow

We first present a convergence study of the numerical method for the case when the solution is smooth.
Such a solution is difficult to obtain in general, but may be constructed using the method of analytic solutions
for a modified set of equations. The idea is to pick a smooth function and then add a forcing term to the right-
hand-side of (3) so that the function becomes an exact solution of the modified equations. We then make a
straightforward extension to the numerical method to handle the forcing term. This approach is quite general
and is very useful to check the implementation of any numerical method and to verify its convergence rate.

Let us(x1,x2, t) be a chosen smooth function, and consider the modified equations
o

ot
uþ o

ox1

f1ðuÞ þ
o

ox2

f2ðuÞ ¼ hðusÞ; ð45Þ
where u, f1 and f2 are defined in (3), and
hðusÞ ¼
o

ot
us þ

o

ox1

f1ðusÞ þ
o

ox2

f2ðusÞ:
An equation of state is needed to complete the system of equations and we assume the one for a mixture of two
ideal gases given in (9). Clearly, u = us is a solution of (45), and many choices for us can be made for the pur-
pose of a convergence study. For example, let
qs ¼ 1
8

cos p x1 � 1
2

� � 
cosðpx2Þ cosðptÞ þ 1;

u1;s ¼ cosðpx1Þ cosðpx2Þ cosðptÞ;
u2;s ¼ 1

2
cos p x1 � 1

2

� � 
cos p x2 � 1

2

� � 
cosðptÞ;

ps ¼ qs
1
4

cosðpx1Þ cos p x2 � 1
2

� � 
cosðptÞ þ 1

� �
;

/a;s ¼ 1
8

cosðpx1Þ cosðpx2Þ cosðptÞ þ 1
2
;

9>>>>>>=>>>>>>;
ð46Þ
be the density, velocity, pressure and mass fraction used to construct the conservative variables in us. Here, we
use ca = 3.0, cb = 1.4, Cv,a = 2.4 and Cv,b = 4.2 for the ratio of specific heats for the mixture given in (10).

We consider the numerical solution of (45) for two different domains. The first domain is a square with
jxkj 6 2, k = 1,2. For this domain (and for later examples) we use a Cartesian grid defined by
R ¼ fðx1;c þ i1Dx1; x2;c þ i2Dx2Þj Dxk ¼ ðxk;d � xk;cÞ=N k; ik ¼ 0; 1; . . . ;Nk; k ¼ 1; 2g: ð47Þ
Here, we use x1,d = x2,d = �x1,c = �x2,c = 2 and N1 = N2 = 40 m, where m is an integer indicating grid size.
The initial condition is taken to be us(x1,x2,0) and the boundary conditions on the perimeter of the square are
given by the exact solution. We integrate the modified equations numerically for 0 6 t 6 1 and compute the
error. For this calculation, we replace the minmod limiter in (33) with an average of the two arguments of the
function. This is done so that the convergence test is not adversely affected by a loss of accuracy near local
extrema in the smooth solution. Table 1 shows the maximum error in the primitive variables at t = 1 for
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various grid resolutions determined by m. Assuming that the error for a variable w, say, behaves according to
ewðmÞ ¼ Kha

m, where K is a constant and hm is a representative grid spacing for a given m, the convergence rate
a can be estimated by a least squares fit to the computed errors. These convergence rates are shown in the table
and we note that second-order convergence is achieved for each of the variables.

The second domain is a circular disk of radius 0.8 which is covered by an overlapping grid consisting of a
Cartesian grid given by (47) and an annular grid defined by
Table
Conve

m

1
2
4
8

a

Maxim
estima

Table
Conve

m

1
2
4
8

a

Maxim
estima
A ¼ fðrc þ irDr; hc þ ihDhÞj Dr ¼ ðrd � rcÞ=Nr; Dh ¼ ðhd � hcÞ=N h; ik ¼ 0; 1; . . . ;Nk; k ¼ r; hg: ð48Þ

For this overlapping grid, we use rc = 0.4, rd = 0.8, hc = 0, hd = 2p, Nr = 10 m and Nh = 80 m for the bound-
ary-fitted annular grid, and x1,d = x2,d = �x1,c = �x2,c = 0.6 and N1 = N2 = 30 m for the background Carte-
sian grid. This test provides a further check of the implementation of the scheme for a curvilinear grid and
checks the accuracy of the interpolation at the grid overlap. Table 2 shows the maximum error in the primitive
variables at t = 1 for various resolutions of the overlapping grid. As before we note that second-order conver-
gence is achieved for each of the variables.

5.2. 1-D Shock–interface interactions

Having shown the convergence of the numerical method for smooth solutions, we now turn our attention to
problems involving a sharp interface between pure materials and the interaction of the interface with shocks.
For such problems, the numerical scheme is conservative in the regions on either side of the material interface
where /a = 0 or /a = 1 (and away from grid overlaps). Near the interface, the energy correction is applied to
suppress numerical oscillations and there the numerical scheme is quasi-conservative as pointed out in Section
3. Discrete conservation is particularly important in the vicinity of shocks and so it is of interest to study the
behavior of the numerical method for problems in which the interface and shocks interact. As in the previous
study, we focus on problems for which exact solutions are available. This is done first for a one-dimensional
problem involving ideal gases. A two-dimensional case involving JWL equations of state is considered in the
next section.

For the one-dimensional problem, we consider an interface initially located at x = 0.5 separating materials
with ca = 1.35 and Cv,a = 2.4 to the left and cb = 5.0 and Cv,b = 1.5 to the right. These values correspond
roughly to high explosive products (material a) and a confining material (material b), see [26]. To the left
of the interface in material a there is a shock, initially at x = 0.1, traveling to the right with speed 2.324 relative
1
rgence results for the square domain

eq(m) eu1
ðmÞ eu2

ðmÞ ep(m) e/a
ðmÞ

1.3e�2 1.9e�2 8.1e�3 1.0e�2 9.5e�4
3.0e�3 5.2e�3 2.2e�3 2.8e�3 2.6e�4
7.7e�4 1.4e�3 6.0e�4 7.8e�4 7.0e�5
2.0e�4 3.7e�4 1.8e�4 2.1e�4 2.0e�5

2.0 1.9 1.8 1.9 1.9

um errors in density, velocity components, pressure and mass fraction at t = 1 for grid resolutions determined by m, and the
ted convergence rate a for each variable.

2
rgence results for the circular domain

eq(m) eu1
ðmÞ eu2

ðmÞ ep(m) e/a
ðmÞ

2.2e�3 4.6e�3 2.5e�3 1.6e�3 9.7e�4
5.3e�4 1.1e�3 5.6e�4 4.2e�4 2.3e�4
1.3e�4 2.7e�4 1.2e�4 1.2e�4 5.8e�5
3.1e�5 6.5e�5 3.3e�5 3.3e�5 1.4e�5

2.1 2.0 2.1 1.9 2.0

um errors in density, velocity components, pressure and mass fraction at t = 1 for grid resolutions determined by m, and the
ted convergence rate a for each variable.
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to the interface. At time t = 0.1721, the interface and shock collide resulting in a transmitted shock traveling to
the right in material b and a reflected shock traveling to the left in material a. An x–t diagram for the problem
in the reference frame of the interface is shown in Fig. 5 and the primitive states separated by the shocks and
the material interface are indicated. For the chosen states w1 and w2 on either side of the interface at t = 0 and
for a chosen shock Mach number equal to 2, the remaining states can be obtained by solving suitable Riemann
problems. All of these states are collected in Table 3.

We consider two numerical experiments involving the configuration shown in Fig. 5. In both experiments,
the usual small start-up errors in the other characteristic fields associated with taking a perfect jump for the
initial shock are filtered out so as not to corrupt later interactions with the material interface. For the first
experiment, the interface is moving to the right with a speed equal to 0.1 relative to the fixed lab frame of
the grid. Since an isolated interface will slowly widen, the interface is smeared over a few grid cells in the
numerical solution. Prior to the collision with the shock, the local behavior of the numerical solution near
the interface is similar to that shown in Fig. 1 for the uncorrected scheme and to that shown in Fig. 2 for
the corrected scheme. The numerical errors in the solution for the uncorrected scheme persist after the shock
and interface collide, and new errors arise due to the interaction. Fig. 6 shows the behavior of the solution of
the uncorrected scheme at a time t = 0.25 after collision for a fine grid with 1600 grid cells on the interval [0, 1].
Here we note, in particular, a large undershoot in the density just to the right of the interface which is a result
of the interaction, and a relatively small blip in all of the variables to the left of the reflected shock which is a
remnant of the error generated near the interface prior to the interaction.

Fig. 7 shows the numerical solution for the same problem but with the energy correction term included.
Here we note that after the collision the behavior of the numerical solution near the interface remains in good
agreement with the exact solution. The behavior and position of the transmitted and reflected shocks are in
good agreement with the exact solution as well. Since the shock and interface interact for only a few grid cells
in space and time, there is only a short period over which the non-conservative correction could influence the
position of the shock. It is observed that the overall contribution from the energy correction has no significant
effect on shock position, supporting the argument made previously. A closer look at the behavior near the
t

x

w1 w2

w3

w4 w5

0.50.1

0.1721

0

Fig. 5. An x–t diagram for the one-dimensional shock–interface interaction problem. An incident shock (solid line) collides with an
interface (dashed line) resulting in a transmitted and reflected shocks.

Table 3
Primitive states for the regions of the flow shown in Fig. 5 for the one-dimensional shock–interface interaction problem

Region 1 Region 2 Region 3 Region 4 Region 5

q 1 1.9 2.7647 3.9581 2.5786
u 0 0 1.4833 0.9304 0.9304
p 1 1 4.4468 7.2498 7.2498
/a 0 1 0 0 1
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Fig. 6. Numerical solution of the uncorrected scheme at t = 0.25 for a one-dimensional interface–shock interaction problem with a
uniform velocity equal to 0.1 ahead of the incident shock. The black curves are the exact solution and the red dots are the numerical
solution. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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interface and shocks in Fig. 8 for various grid resolutions shows the convergence of the method toward the
exact solution.

A further test of the method can be done by considering a second numerical experiment in which the inter-
face is at rest with respect to the grid prior to shock collision. In this case, the interface remains sharp for both
the uncorrected and corrected schemes prior to collision. Hence, any error that appears in the numerical solu-
tion after the collision is entirely a result of the interaction. Fig. 9 shows a comparison of the density for the
uncorrected and corrected schemes at t = 0.25. Here, we see that the solution of the energy-corrected scheme
remains in excellent agreement with the exact solution. (Excellent agreement is also found in the other prim-
itive variables.) The solution of the uncorrected scheme, on the other hand, shows a large undershoot similar
to that observed in Fig. 6. We also note that the solution from the uncorrected scheme contains a small error
in the position of the transmitted shock and an overshoot in the state behind the reflected shock.

For the previous experiments, we considered the numerical solution for a single component grid. It is also
of interest to consider the effect of a grid overlap on the behavior of the numerical solution of the energy-cor-
rected scheme. In order to examine this behavior, we consider an overlapping grid consisting of two compo-
nent grids that overlap at x = 0.5. The grids are constructed so that the grid spacing is the same Dx for each
grid, but there is a mismatch of Dx/2 at the overlap so that the interpolation at the overlap plays a role in the
calculation. For the case when the flow is at rest relative to the grid ahead of the shock, the interface sits on the
overlap until t = 0.1721 when the shock collides with it. Prior to the collision there is no significant error in the
numerical solution near the interface. After the collision the behavior of the solution is similar to that obtained
for the calculation without the overlap. For example, Fig. 10 shows the behavior of the density at t = 0.25 for
the numerical solution of the energy-corrected scheme with and without a grid overlap. Both of these solutions
are in excellent agreement with the exact solution.
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Fig. 8. Grid convergence of density at t = 0.25 for the energy-corrected scheme for a one-dimensional interface–shock interaction problem
with a uniform velocity equal to 0.1 ahead of the incident shock. Numerical solutions with 400 (circles), 800 (crosses) and 1600 (dots) grid
cells are shown.
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5.3. 2-D Shock–interface interactions

We now investigate the behavior of the present scheme for a two-dimensional flow involving the interaction
of an oblique shock with a material interface. The configuration of the problem is shown in Fig. 11. A planar
interface separates material a above given by the primitive state w1 (with /a,1 = 1) and material b below given
by the primitive state w2 (with /a,2 = 0). The states are in pressure equilibrium, i.e. p1 = p2, and the normal
component of the velocity is zero for both states. An oblique shock deflects the flow by angle h. The states
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Fig. 10. Density at t = 0.25 for a one-dimensional interface–shock interaction problem with no background velocity ahead of the incident
shock. Numerical solution for an overlapping grid (left) and one component grid (right). The black curves show the exact solution and the
blue dots show numerical solution for both cases. (For interpretation of the references in colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 11. Oblique shock interaction with a planar material interface. The interface (dashed line) separates material a above from material b

below, and is deflected by an angle h behind the shock. The oblique shock (solid line) make angles n and g relative to the vertical.
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downstream of the shock, w3 and w4, are also in pressure equilibrium, i.e. p3 = p4, with zero normal flow rel-
ative to the deflected interface. The angles of the oblique shocks relative to the vertical in materials a and b are
given by n and g, respectively. We are motivated to consider this configuration for two reasons. First, the exact
de
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ity

n problem with no background velocity aheadblue crosses show numerical solutions of theuncorrected and corrected schemes, respectively. (For interpretation of the references in colour in this figure legend, the reader is referred223 (2007) 262–297
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solution may be constructed using a shock-polar analysis of the flow on either side of the interface, and thus
this becomes a suitable test case for the numerical scheme for a non-trivial two-dimensional flow. Second, the
configuration is related to the local behavior of a detonation near a strong inert confinement (see [27]).

The solution for the flow can be constructed by considering the oblique shock jump conditions for the pure
materials on either side of the interface. In material a, for example, the shock conditions give
Fig. 12
deflect
exact s
h3 = h4
q1 sin n ¼ q3 sinðnþ h3Þ;
q1q1 cos n ¼ q3q3 cosðnþ h3Þ;
p1 þ q1ðq1 cos nÞ2 ¼ p3 þ q3ðq3 cosðnþ h3ÞÞ2;
h1 þ 1

2
ðq1 cos nÞ2 ¼ h3 þ 1

2
ðq3 cosðnþ h3ÞÞ2;

9>>>>=>>>>; ð49Þ
where qi, qi, pi and hi = ei + pi/qi, i = 1,3 are the density, magnitude of the velocity, pressure and enthalpy,
respectively, and h3 is the flow deflection in region 3. The equation of state gives ei = ea(qi,pi), i = 1,3, where
ea is the internal energy for material a. For a given upstream state, these equations determine the downstream
state as a function of the shock angle n. A similar set of equations determines the downstream state in material
b as a function of the shock angle g for a given upstream state. These two shock angles are then determined by
the condition that p3 = p4 and h3 = h4 = h.

For example, let us consider two materials described by the JWL equations of state given in (4) with stiff-
ening functions, F k and Zk, k = a or b, given in (5) and (6), respectively. The parameters in these functions are
taken to be xa = 0.8938, Aa = 692.5067, Ba = �0.044776, R1,a = 11.3, R2,a = 1.13, Cv,a = 1.0 and v0,a = 0.5 for
material a, and xb = 0.5, Ab = 13.1813, Bb = 0.5677291, R1,b = 6.2, R2,b = 2.2, Cv,b = 0.40209 and v0,b = 0.5
for material b. This choice corresponds approximately to the explosive LX-17 reactants (material a) and prod-
ucts (material b) [20]. For a given upstream state the pressure and flow deflection in the downstream state on
either side of the interface may be computed versus the shock angle. These shock polars are shown in Fig. 12
for the upstream state given in Table 4. The solution is determined by the intersection of the these curves
where p3 = p4 and h3 = h4 = h. At this intersection, n = 0.2141538, g = 0.2485619 and h = 0.1, and the corre-
sponding state of the flow is also given in Table 4. In this solution, we choose the upstream states so that
q3 = q4 which implies that the normal and tangential components of the velocity are equal across the interface
in the flow behind the shock. This choice is made for numerical convenience as it avoids the Kelvin–Helmholtz
instability that would develop for the case when the tangential component of the velocity is not equal across
the interface. Upstream of the shock there is a slip across the interface, but this occurs along a grid line. The
numerical approximation for this situation is exact and so there is negligible growth of the instability here. The
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Table 4
Primitive variables for the flow configuration shown in Fig. 11

Region 1 Region 2 Region 3 Region 4

q 0.9 1.1 1.344539 1.574952
u1 0.3516656 0.3131895 0.0828007 0.0828007
u2 0 0 0.0584751 0.0584751
p 0.02 0.02 0.226085 0.226085
/a 1 0 1 0

The velocities include a constant translation to the left with speed 0.5.
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solution also includes a uniform translation equal to 0.5 in the negative x1-direction as an added test of the
numerical scheme.

Numerical solutions are computed for 0 6 t 6 1 using the exact solution given in Table 4 centered about the
origin as initial conditions. The computation is performed on a rectangular grid R defined by (47) with
x1,d = x2,d = �x1,c = �x2,c = 2 and N1 = N2 = 160. Three AMR grid resolutions are investigated. The first
uses only the base grid R, the second uses R and one AMR level with refinement factor 4, and the third uses
2 AMR levels each with refinement factor 4. This results in effective grid resolutions given by N1 = N2 = 160,
640, and 2560, respectively. At time t = 1 the structure is centered at x1 = �0.5, x2 = 0, and our main focus is
on the behavior of the numerical solution in this vicinity. Thus, for the purposes of this test, the boundaries of
the domain are chosen far enough away so that the choice of the boundary conditions has no effect on this
local solution at t = 1.

Fig. 13 shows color contours of density and pressure of the numerical solution at t = 0 and t = 1. The solu-
tions shown are at the finest resolution and the corresponding AMR grid structures at t = 0 and t = 1 are also
Fig. 13. Numerical solution at t = 0 (top row) and t = 1 (bottom row) for the interaction of an oblique shock with a planar material
interface. The left column shows the density, the middle column shows the pressure, and the right column is the AMR grid for each
calculation.
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shown in the figure. The local structure near the intersection of the interface and the oblique shock appears to
translate unchanged in the numerical solution in agreement with the exact solution. In particular, we observe
no numerical oscillations in the pressure near the material interface at t = 1. We note that there are regions
near the bottom and top of the computational domain at x2 = �2 and x2 = 2, respectively, and behind the
shock where the flow is not uniform. These regions, seen as slight shadows in the shaded contour plots in
the figure, are due to the interaction of the shock and the boundary, but do not effect the solution near the
interaction of the shock and interface.

A closer look at the numerical solution at t = 1 is taken by considering one-dimensional slices along the
lines x1 = �0.25, x2 = 0.5 and x2 = �0.5. Fig. 14 shows the density along x1 = �0.25 for the numerical solu-
tion at the finest resolution. This slice focuses on the behavior near the material interface downstream of the
shock, and we note excellent agreement with the exact solution. For comparison purposes, we also show the
behavior of the numerical solution given by the uncorrected scheme with the same grid resolution. This uncor-
rected solution shows a large undershoot near the interface similar to that observed previously in the one-
dimensional shock interaction problem.

Fig. 15 shows grid convergence of the pressure along the lines x2 = 0.5 and x2 = �0.5. These lines are close
enough to the intersection of the shock and the interface so that the solution would be effected by any errors
generated along x2 = 0. It is seen that shock locations are in good agreement with the exact solution and that
no errors appear from the interface along x2 = 0.
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solution of the energy-corrected scheme while the red dots give the solution of the uncorrected scheme. The exact solution is given by the
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286 J.W. Banks et al. / Journal of Computational Physics 223 (2007) 262–297
5.4. Planar shock interaction with cylindrical gas bubbles

In this section we consider the interaction of a planar shock wave with cylindrical gas bubbles. The basic
problem involves the interaction with an isolated bubble, and is motivated by experiments performed by Haas
and Sturtevant [28], numerical calculations presented by Schwendeman [29], Quirk and Karni [3], and others.
In the experiments, a relatively weak shock in air with shock Mach number equal to 1.22 impacts a cylindrical
bubble filled with either helium or a refrigerant. For our numerical calculation of this problem, these materials
are modeled as ideal gases with ratio of specific heats c and specific heats (at constant volume) Cv taken from
[3] and listed in Table 5. The air outside and the gas inside the bubble, either helium or refrigerant, are
assumed to be in temperature and pressure equilibrium prior to the impact of the shock, and the values for
q0 in Table 5 reflect this assumption. Ahead of the shock initially at x1 = 0.05, the gas is at rest with uniform
ambient pressure equal to 1.0. The state of the flow behind the shock is given by the usual shock conditions for
air assuming the shock Mach number is 1.22. The cylindrical bubble has radius equal to 0.1 and is centered at
(x1,x2) = (0.2,0.0). The base computational grid is given by (47) with x1,c = 0, x1,d = 0.75, x2,d = �x2,c = 0.25,
N1 = 185 and N2 = 123. For our calculations, we use up to 2 AMR grid levels with refinement factor 4 on top
of this base grid giving effective resolutions of N1 = 2960 and N2 = 1968. The bottom and top boundaries are
modeled as solid (slip) walls and use a simple symmetry condition. The left boundary uses an inflow condition
given by the initial state behind the shock, and the right boundary uses an outflow condition. All of these
boundaries are at a sufficient distance from the bubble so that they do not play a role in the results shown.

Fig. 16 shows numerical Schlieren images and shaded color contours of pressure for the interaction of a
planar shock with a helium bubble at times t = 0.02, 0.08, 0.16 and 0.35. The images at t = 0.02 show the pla-
nar shock just before impact with the bubble. The shock is traveling from left to right in the figure and the
bubble is stationary at this point. The Schlieren image on the left measures the magnitude of the gradient
of density (see [30]) and shows the incident shock and material interface clearly. The right image shows the
jump in pressure at the shock and pressure equilibrium at the material interface. At t = 0.08 the shock has
impacted the bubble. Since the sound speed of the helium inside the bubble is much greater than the sound
speed of air outside, the transmitted shock in the bubble has traveled well ahead of the incident shock and
nearly reached the far boundary of the bubble. There is also a reflected shock generated from the initial
interaction which travels away from the bubble in the flow behind the incident shock. At t = 0.16 the trans-
mitted shock has reflected from the far boundary of the bubble with some transmission into the air. The
reflected shock from this secondary interaction has traveled back through the bubble and into the air behind.
This shock reflects back and forth inside the helium bubble several times before loosing enough strength so
that it can no longer be seen. The final time, t = 0.35 shows the refracted shock well beyond the deformed
bubble which is in the process of being divided. By this late time significant instability can be seen along
the material interface in the form of roll ups and fingers. The plots show that the density and pressure are well
behaved through the interface with no sign of the type of numerical errors discussed previously.

Since the sound speed of the helium inside the bubble is greater than the sound speed of the air outside, the
helium-filled bubble acts as a divergent lens for the incident shock as discussed in [28]. The opposite case
occurs for the refrigerant-filled bubble where the sound speed is lower inside the bubble. For this case, the
bubble acts as a convergent lens as may be seen in the sequence of images shown in Fig. 17. The left column
in the figure shows numerical Schlieren images at times t = 0.02, 0.08, 0.16 and 0.35. At early times, we note
that the transmitted shock lags behind the incident shock and is concave forward. There is also faint shock
reflected from the interface (see t = 0.08) which travels back into the flow. At t = 0.16 it becomes clear that
the shock will converge to some focus point. The final time in the sequence shows the shock diverging from
Table 5
Ideal equation of state parameters and ambient density for air, helium and refrigerant

Air Helium Refrigerant

c 1.40 1.67 1.25
Cv 0.720 3.11 0.365
q0 1.0 0.138 3.15

The ambient density for air is normalized to one.



Fig. 16. Planar shock interaction with a helium-filled bubble at times t = 0.02, 0.08, 0.16 and 0.35 (top to bottom): numerical Schlieren
images (left column) and shaded contours of pressure (right column).
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that point of focus and the unstable material interface rolling up. As before, we observe no numerical errors
associated with the captured material interface, and good agreement with experimental [28] and numerical [3]
results.



Fig. 17. Planar shock interaction with a refrigerant-filled bubble at times t = 0.02, 0.08, 0.16 and 0.35 (top to bottom): numerical Schlieren
images (left column) and shaded contours of pressure (right column).

288 J.W. Banks et al. / Journal of Computational Physics 223 (2007) 262–297



J.W. Banks et al. / Journal of Computational Physics 223 (2007) 262–297 289
The numerical approach used to compute the behavior for an isolated bubble may be used to compute the
flow for more general cases involving the interaction of a shock with several bubbles (or other curved inho-
mogeneities). For example, Fig. 18 shows a configuration in which an incident planar shock (with shock Mach
number equal to 1.22 in air as before) approaches a cluster of six cylindrical bubbles with radii ranging from
0.2 to 1.0 in the region jx1j 6 5 and jx2j 6 5. The subsequent behavior, shown in Fig. 19, depends on the prop-
erties of the gas within the bubbles. The left column of Schlieren images in the figure shows the behavior for
helium-filled bubbles at times t = 2.0, 4.0 and 6.0, while the behavior for refrigerant-filled bubbles is shown in
the right column at the same three times. The computations are carried out on a base grid given by (47) with
x1,d = x2,d = �x1,c = �x2,c = 5 and N1 = N2 = 256, and with two additional levels of AMR refinement using
refinement factor 4.

The early behavior in which the shock first meets the leading bubbles is similar to that observed in the iso-
lated bubble cases. At later times, the transmitted and reflected shocks from each bubble interact and the sub-
sequent wave structure is complex. At the final time shown, the leading transmitted wave is generally convex
forward for the helium case and concave forward for the refrigerant case indicating that the cluster of bubbles
effectively acts as a divergent or convergent lens for the incident shock as might be expected. For the refrig-
erant case, each bubble generates a focusing event at various times near the rightmost boundary of each bub-
ble. This focusing results in a pressure spike and a subsequent diverging shock similar to the isolated bubble
case, but with several bubbles each focusing events can be either enhanced or suppressed by the complex inter-
actions taking place. In our simulations, the largest pressure peak for the single bubble case occurs at t = 0.263
with a maximum pressure of 4.826. For the case of multiple bubbles the focusing event for the bubble at the
lower right occurs at t = 5.78 with a maximum pressure of 5.720 while the focusing event for the bubble at the
upper right occurs at t = 4.82 with a maximum pressure of 3.710. These focusing events are shown in Fig. 20
for the case of an isolated bubble and in Fig. 21 for the case of multiple bubbles. Schlieren images are shown
along with pressure at the time of each focusing event. The overall structure of the flow is clear from the
Schlieren images, and the location and magnitude of the pressure spike at the moment of shock focusing is
clear from the pressure plots.

5.5. Cylindrical vessel

In order to demonstrate the capability of the method for overlapping grids with AMR, we present a final
computation of multi-material flow in a rigid cylindrical vessel. For this problem, the vessel is filled with two
ideal gases separated by a material interface which is planar initially. The vessel is then impulsively driven nor-
mal to the interface causing a curved shock to form along the compressive portion of the boundary and a rar-
efaction to form along the opposing portion of the boundary. (For the purposes of computation, it is simpler
to keep the vessel fixed and consider a flow with an initial uniform velocity.) The shock propagates away from
the boundary and interacts with the material interface resulting in a complex flow which we describe below.
Fig. 18. Numerical Schlieren images of a planar shock in air impacting a cluster of cylindrical bubbles: initial configuration.



Fig. 19. Numerical Schlieren images of a planar incident shock in air impacting a cluster of cylindrical bubbles: helium-filled bubbles (left
column) and refrigerant-filled bubbles (right column). The times from top to bottom are t = 2.0, 4.0 and 6.0.
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To set the conditions of the problem, we assume that the cylindrical vessel has radius 0.8 and is centered at
the origin, x1 = x2 = 0. The material interface is located at x1 = 0 initially and separates air for x1 < 0 and
helium for x1 > 0. The parameters for each gas are taken from Table 5 with the initial pressure set to 1.0



Fig. 20. Schlieren image and shaded contours of pressure at shock focus (at t = 0.263) for an isolated refrigerant-filled bubble. The
maximum pressure is found to be 4.826 at the location labeled F.

Fig. 21. Schlieren images and shaded contours of pressure at two shock-focusing events (top at t = 4.82 and bottom at t = 5.78) for a
collection of refrigerant-filled bubbles. The locations of peak pressure are labeled F. The shock–bubble interactions prior to the shock-
focussing events can serve to either suppress (top) or enhance (bottom) the peak pressure attained at the moment of shock focusing as
compared to the isolated bubble case.
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throughout the domain. We attach ourselves to the frame of the vessel and take the components (u1,u2) of the
fluid velocity to be (�1,0) initially throughout the domain. Numerical solutions are computed using a (base-
level) overlapping grid consisting of a background Cartesian grid and an annular boundary-fitted grid. The



Fig. 22. Numerical Schlieren images (left) and shaded contours of pressure (right) for an impulsively driven cylinder containing a material
interface separating air and helium. Solutions from top to bottom are at times t = 0.25, 0.5, 0.75 and 1.0.
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Cartesian grid is given by (47) with x1,d = x2,d = �x1,c = �x2,c = 0.8 and N1 = N2 = 4N, and the annular grid
is given by (48) with rc = 0.8 � 6.4/(4N), rd = 0.8, hc = 0, hd = 2p, Nr = 5 and Nh = 12N. The integer N is used
to vary the resolution of the base-level grids. For this grid construction the number of grid lines in the radial
direction of the annular grid is fixed while the width of the annular grid decreases with increasing N. This is
done so that the bulk of the grid points lie on the Cartesian grid as N increases.

Fig. 22 shows the behavior of the solution at times t = 0.25, 0.5, 0.75 and 1.0. The calculations shown in this
figure use N = 40 for the base-level grids and two additional levels of refinement grids with refinement factor
equal to 4. The basic evolution of the solution is dominated by the shock which forms on the left and prop-
agates to the right towards the material interface. The shock is seen as a nearly semi-circular wave in the top
pair of plots (t = 0.25) while the interface is seen as an approximately vertical line near the center of the
domain. The leading edge of the expansion generated from the boundary of the cylindrical vessel on the right
has propagated to the left and through the material interface. It is seen in the plots at t = 0.25 as two nearly
radial lines emerging from the center of the vessel. By t = 0.5 the shock has already focused, and its central
portion has collided with the interface and passed through it into the helium on the right. Once in the helium,
the shock diverges rapidly and reflects off the boundary on the right. The flow behind the diverging shock now
drives the material interface to the right in the central portion of the vessel. The plots at t = 0.75 show the
curved reflected shock which travels to the left. There is also a small high-pressure region in the air on the left
which is a remnant of the earlier focusing event. The curved reflected shock, in turn, passes back through the
interface into the air and focuses as seen in the final pair of plots at t = 1.0. The material interface has rolled
up as a result of a Richtmyer–Meshkov instability caused by the passage of the various shocks through the
interface.

In order to investigate the effect of the grid overlap on the numerical solution, we compare the solution
shown in Fig. 22 with a solution computed using a different base-level overlapping grid. The base-level grids
Fig. 23. Base-level grids (right) and numerical Schlieren images at t = 1.0 (left) for an impulsively moved cylindrical vessel.



Fig. 24. Numerical Schlieren images at t = 1.0 (left) and the AMR grid structure (right) for an impulsively moved cylindrical vessel. For
the grids, the base grid is colored blue, the first level of AMR refinement is green, and the second level of AMR refinement is red. The
effective grid spacings from top to bottom are 0025, 0.00125 and 0.000625. (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)
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used for the comparison are shown in Fig. 23. The grid on the top right in the figure was used for the previous
calculation and its grid overlap is very close to the boundary of the cylindrical vessel. The grid on the bottom
right has a much thicker annular component grid and its overlap occurs near a radius equal to 0.4. (This latter
grid was used for the convergence study in Section 5.1.) Both base-level grids have approximately the same
grid spacings and numerical solutions are computed for both grids with two levels of refinement grids as
before. Corresponding numerical Schlieren images of the solutions at t = 1.0 are displayed in the figure on
the left. We observe that the overall behavior of the shocks, contacts and material interface are essentially
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the same for both calculations. The main difference appears in the fine-scale structure of the instability that
occurs along the material interface. This difference is attributed to numerical perturbations from both the grid
overlap and from the roughly planar material interface traveling obliquely to the annular section for a larger
portion of the domain in the case on the right where the annular grid is thicker.

As a final calculation we compare numerical solutions at t = 1.0 for increasing grid resolution. The base-
level grid used for this study is that shown on the top right in Fig. 23 with N = 10, 20 and 40, and with two
refinement levels for each case. Fig. 24 shows Schlieren images at t = 1.0 from these three calculations along
with the structure of the grid refinement. As the resolution increases, the captured shocks and material inter-
face sharpen, as expected, and we note an increase in the amount of fine-scale structure along the unstable
material interface. For the calculations using the coarser base-level grids, the error estimator flags all points
on the base-level so that the whole domain is covered by refinement grids on the first level. As the base-level
grids refine, the refinement-grid structure increasingly localizes the fine-scale structures in the solution so that
they are captured well at the finest resolution.

6. Conclusions

We have described a numerical method for the solution of high-speed multi-material flows. The method is
an extension of a standard Godunov-type shock-capturing scheme with the addition of a numerical source
term at the level of the truncation error designed to suppress numerical errors occurring as a result of a cap-
tured material interface. The numerical source is computed using an auxiliary set of special Riemann problems
which allows for general equations of state to be considered. These Riemann problems involve uniform-pres-
sure–velocity flow, and thus the corresponding Godunov flux is an upwind flux which is computed easily. This
allows efficient computation with the result that the overall computational cost for the method is not signif-
icantly more than that for the original shock-capturing scheme. The numerical method is applied to two-
dimensional flow using overlapping grids. Complex geometries can be described using these overlapping grids
while maintaining computational efficiency because the bulk of the grid points lie on Cartesian component
grids. Adaptive mesh refinement is used to capture fine structures in the flow such as shocks, contacts, and
material interfaces. While the method can accommodate any mixture equation of state, we have focused
our attention on an equation of state constructed assuming JWL equations of state for each component of
the mixture. This form also includes a mixture of ideal gases as a special case.

A series of test problems have been discussed in order to verify the accuracy of the new numerical method.
Convergence studies on smooth flows were performed using the method of analytic solutions. These calcula-
tions were carried out on a sequence of Cartesian grids and a sequence of overlapping grids with increasing
grid resolution. A comparison was made between the numerical solution and the exact solution, and sec-
ond-order convergence of the method was shown for smooth flow. The behavior of the method for flows
involving the interaction of the interface and a shock was examined using both one-dimensional and two-
dimensional flows where exact solutions are known. The one-dimensional problem investigated a shock
impacting a material interface in several ways. In one setup, the interface moved relative to the grid and thus
became smeared over a few grid cells prior to collision with the shock. In another setup, the interface was sta-
tionary relative to the grid and thus remained sharp prior to collision. Finally, in a third setup, an overlapping
grid was used and the interface was positioned on the overlap prior to collision with the shock. All three cases
showed good agreement with the exact solution with no numerical oscillations near the material interface that
arise using standard shock-capturing methods. An exact solution for a non-trivial two-dimensional flow was
constructed using shock polars assuming a two-component mixture described by JWL equations of state.
Again, the numerical method was shown to give accurate results.

Two additional problems in which exact solutions are not available were discussed in order to further dem-
onstrate the capabilities of the method. The first involved an incident planar shock in air impacting an isolated
cylindrical bubble or a collection of several bubbles filled with either helium or refrigerant. For the case of an
isolated bubble, the problem has been extensively studied both numerically and experimentally, and our cal-
culations are found to be in good agreement with those previous results. We introduce an additional level of
complexity by performing a computation of a collection of cylindrical bubbles of varying sizes. For the refrig-
erant case, it was found that the interaction of the incident shock and the leading bubbles had a significant
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effect on the interaction of the disturbed shock with later bubbles resulting in their shock-focusing pressure rise
to be amplified for some bubbles while diminished for others. The second problem is one of an impulsively
driven cylinder containing a material interface and is meant to highlight the application of the method for
overlapping grids. Calculations are carried out on two overlapping grids with different positions of the over-
lap. The results are found to be in good agreement with only slight differences in the behavior of the unstable
material interface. A further grid-refinement study showed the convergence of the bulk of flow features and
the emergence of a Richtmyer–Meshkov instability as the grid became increasingly refined.

The numerical method applied on each component grid is conservative at most grid points, but lacks dis-
crete conservation at points confined to a thin layer near the material interface. In addition, discrete conser-
vation is lost at the grid overlap. This raises the question of why the method performs so well on the test
problems presented, including those tests where shocks interact with a material interface or the grid overlap.
The question as it pertains to the overlap and the non-conservative interpolation applied there was investi-
gated by Berger in [31] and later by Chesshire and Henshaw in [32,33]. The result was that conservative inter-
polation at the grid overlap is not critical provided shocks do not interact with the overlap for an extended
period of time (as might be the case, for example, of a nearly-steady bow shock that slowly moves through
a grid overlap). The issue concerning the quasi-conservative method considered here for a captured material
interface is similar. If a shock and material interface were to interact for an extended period of time, then this
could lead to numerical error in the shock position due to the lack of conservation in the numerical scheme
near the interface. However, because a shock and material interface necessarily move at different speeds (sep-
arated by the local sound speed approximately) and because the width of a captured interface goes to zero as
the grid is refined, the interaction time is small. As a result, one might expect (and our numerical results indi-
cate) that there are no significant errors near the shock due to the lack of conservation. This finding is more
broadly interpreted to mean that for numerical methods which are conservative except possibly in small
regions of time and space, their lack of global conservation might not be critical provided that the interaction
of shocks with non-conservative regions is short and only a finite number of such interactions take place.

We have shown how a standard shock-capturing method such as Godunov’s method may be modified to
effectively and efficiently compute multi-material flows. Our focus has been on inert flows, but our numerical
approach may be extended to treat reactive flow. This extension is in progress.
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